Acta Cryst. (1998). C54, 288-290

# Diaquabis(2-pyridinecarboxylato- $\mathrm{N}, \mathrm{O}$ )manganese(II) 

Nobuo Orabe and Makiko Kolzumi

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577, Japan
(Received 15 May 1997; accepted 11 November 1997)


#### Abstract

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Mn}^{11}$ atom has a distorted octahedral coordination geometry defined by two N atoms of the pyridine rings, two O atoms of the carboxylate groups and two O atoms of the water molecules; all of the corresponding pairs of the ligand atoms lie in cis positions. The carboxylate group is nearly coplanar with the pyridine ring. The crystal structure is stabilized by intermolecular O$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving all water H atoms and the carboxylato groups.


## Comment

2-Pyridinecarboxylic acid, (I) (also called picolinic acid), is a well known terminal tryptophan metabolite (Mahler \& Cordes, 1971) and its crystal structure has been determined (Takusagawa \& Shimada, 1973). The association of picolinic acid with divalent cations such as $\mathrm{Fe}^{\mathrm{II}}$ may induce growth inhibition by withholding them from the cell (Fernandez-Pol, 1977). The anion of (I) has been used as a valuable chelating ligand. The crystal structures of its $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\text {II }}$ complexes (Takenaka et al., 1970) and $\mathrm{Cu}^{\text {II }}$ complex (Faure et al., 1973) have been determined. Kinetic studies of $\mathrm{Co}^{11}$, $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ in solution have also been reported (Das \& Dash, 1993).

(I)

(II)

We wished to determine the crystal structures of metal complexes of picolinic acid in order to clarify
its chelate-forming properties. Accordingly, the structure of the manganese(II) complex of picolinic acid, (II), has been determined (Fig. 1). The Mn atom is coordinated octahedrally by N atoms of the two pyridine rings $[\mathrm{Mn}(1)-\mathrm{N}(1) 2.272$ (2) and $\mathrm{Mn}(1)-\mathrm{N}(2) 2.284$ (2) A$]$, two O atoms of the carboxylate groups $[\mathrm{Mn}(1)-\mathrm{O}(2)$ 2.142 (2) and $\mathrm{Mn}(1)-\mathrm{O}(4) 2.156(2) \AA$ ] and two O atoms of the water molecules [ $\mathrm{Mn}(1)-\mathrm{O}(5) 2.162(2)$ and $\mathrm{Mn}(1)-\mathrm{O}(6) 2.148(2) \AA$ ]. As shown in Table 1, the coordinate angles around the Mn atom are considerably distorted from the ideal octahedral values of $90 / 180^{\circ}$. The main distortions are those of the chelate rings with narrow $\mathrm{O}-\mathrm{Mn}-\mathrm{N}$ angles: $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$ 74.61 (7) and $\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{N}(2) 73.00(7)^{\circ}$. These values are much smaller than those observed in other related metal complexes $[\mathrm{O}-\mathrm{Ni}-\mathrm{N} 81$ and $\mathrm{O}-\mathrm{Zn}-\mathrm{N}$ $80^{\circ}$ (Takenaka et al., 1970), and $\mathrm{O}-\mathrm{Cu}-\mathrm{N} 83.6(1)^{\circ}$ (Faure et al., 1973)], which, however, have a different ligand arrangement (see below). The two 2-pyridinecarboxylato ligands lie roughly perpendicular to one another, a typical torsion angle being $\mathrm{O}(2)-\mathrm{Mn}(1)-$ $\mathrm{O}(4)-\mathrm{C}(13) 98.5(2)^{\circ}$, and all corresponding pairs of ligand atoms lie in cis positions. The carboxyl group is ionized and nearly coplanar with the pyridine ring plane; $\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(1)-3.7(3)$ and $\mathrm{O}(4)-\mathrm{C}(13)-$ $\mathrm{C}(8)-\mathrm{N}(2) 0.7(4)^{\circ}$


Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Ellipsoids for non- H atoms correspond to $50 \%$ probability.

In the crystal packing (Fig. 2), the complex molecules are connected into layers running diagonally across the cell by hydrogen bonds between the carboxylate $\mathrm{O}(1)$, $\mathrm{O}(3)$ and $\mathrm{O}(4)$ atoms, and the water $\mathrm{O}(5)$ and $\mathrm{O}(6)$ atoms as shown in Table 2.
The crystal structure determined in this study is markedly different from those of the $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ complexes (Takenaka et al., 1970) and the $\mathrm{Cu}^{\mathrm{II}}$ complex (Faure et al., 1973), in all of which the two 2-pyridinecarboxylato ligands lie in the equatorial plane and all of the corresponding pairs of ligand atoms lie not in cis but in trans positions in the octahedral coordination.


Fig. 2. Packing diagram of the title compound showing one hydro-gen-bonded layer; hydrogen bonds are indicated as dashed bonds.

## Experimental

A single colorless crystal was obtained by slow evaporation of a $70 \%$ methanol solution of a $2: 1$ molar ratio mixture of 2-pyridinecarboxylic acid and $\left[\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right] .4 \mathrm{H}_{2} \mathrm{O}$ at room temperature.

## Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=335.17$
Monoclinic
$P 2_{1} / n$
$a=11.708$ (2) $\AA$
$b=8.991$ (2) $\AA$
$c=14.994$ (2) $\AA$
$\beta=106.46(1)^{\circ}$
$V=1513.6(4) \AA^{3}$
$Z=4$
$D_{x}=1.471 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not determined

## Data collection

Rigaku AFC-5R diffractometer
$\omega-2 \theta$ scans
Absorption correction: $\psi$ scans (North et al., 1968)
$T_{\text {min }}=0.703, T_{\text {max }}=0.772$
3876 measured reflections
3703 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=21.05-23.00^{\circ}$
$\mu=0.862 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism
$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$ Colorless

2601 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 10$
$l=-19 \rightarrow 18$
3 standard reflections every 150 reflections intensity decay: $0.50 \%$

## Refinement

Refinement on $F$
$R=0.036$
$w R=0.046$
$S=1.76$
$(\Delta / \sigma)_{\max }=0.02$ 。
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Extinction correction: none

2601 reflections 238 parameters All H atoms refined $w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

| $\mathrm{Mn}(1)-\mathrm{O}(2)$ | $2.142(2)$ | $\mathrm{Mn}(1)-\mathrm{O}(6)$ | $2.148(2)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Mn}(1)-\mathrm{O}(4)$ | $2.156(2)$ | $\mathrm{Mn}(1)-\mathrm{N}(1)$ | $2.272(2)$ |
| $\mathrm{Mn}(1)-\mathrm{O}(5)$ | $2.162(2)$ | $\mathrm{Mn}(1)-\mathrm{N}(2)$ | $2.284(2)$ |
| $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(4)$ | $93.59(7)$ | $\mathrm{O}(5)-\mathrm{Mn}(1)-\mathrm{N}(2)$ | $164.02(8)$ |
| $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(5)$ | $92.50(8)$ | $\mathrm{O}(6)-\mathrm{Mn}(1)-\mathrm{N}(1)$ | $93.46(8)$ |
| $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{O}(6)$ | $167.11(7)$ | $\mathrm{O}(6)-\mathrm{Mn}(1)-\mathrm{N}(2)$ | $86.55(8)$ |
| $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$ | $74.61(7)$ | $\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$ | $94.51(8)$ |
| $\mathrm{O}(2)-\mathrm{Mn}(1)-\mathrm{N}(2)$ | $99.04(8)$ | $\mathrm{Mn}(1)-\mathrm{O}(2)-\mathrm{C}(7)$ | $119.4(2)$ |
| $\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{O}(5)$ | $95.40(7)$ | $\mathrm{Mn}(1)-\mathrm{O}(4)-\mathrm{C}(13)$ | $121.1(2)$ |
| $\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{O}(6)$ | $99.16(8)$ | $\mathrm{Mn}(1)-\mathrm{N}(1)-\mathrm{C}(2)$ | $112.8(1)$ |
| $\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{N}(1)$ | $161.53(7)$ | $\mathrm{Mn}(1)-\mathrm{N}(1)-\mathrm{C}(6)$ | $129.1(2)$ |
| $\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{N}(2)$ | $73.00(7)$ | $\mathrm{Mn}(1)-\mathrm{N}(2)-\mathrm{C}(8)$ | $114.3(2)$ |
| $\mathrm{O}(5)-\mathrm{Mn}(1)-\mathrm{O}(6)$ | $84.48(9)$ | $\mathrm{Mn}(1)-\mathrm{N}(2)-\mathrm{C}(12)$ | $128.0(2)$ |
| $\mathrm{O}(5)-\mathrm{Mn}(1)-\mathrm{N}(1)$ | $99.20(8)$ |  |  |

Table 2. Hydrogen-bonding geometry ( $\left(\AA^{\circ}\right)$

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}(5)-\mathrm{H}(9) \cdots \mathrm{O}\left(3^{\mathrm{i}}\right)$ | $0.81(3)$ | $1.90(3)$ | $2.701(3)$ | $170.8(3)$ |
| $\mathrm{O}(5)-\mathrm{H}(10) \cdots \mathrm{O}\left(1^{\mathrm{iij}}\right)$ | $0.84(3)$ | $1.89(4)$ | $2.705(3)$ | $163.1(3)$ |
| $\mathrm{O}(6)-\mathrm{H}(11) \cdots \mathrm{O}\left(1^{i i i}\right)$ | $0.79(3)$ | $1.96(3)$ | $2.721(3)$ | $163.4(3)$ |
| $\mathrm{O}(6)-\mathrm{H}(12) \cdots \mathrm{O}\left(4^{1}\right)$ | $0.85(4)$ | $1.82(4)$ | $2.669(3)$ | $173.3(3)$ |

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $2-x,-y, 2-z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.
All H atoms were located from difference Fourier maps and included in the refinement calculations isotropically.

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985) and DIRDIF (Beurskens, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976).

This research was supported by a grant from The Japan Private School Promotion Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1229). Services for accessing these data are described at the back of the journal.

## References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/I. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Das, N. \& Dash, A. C. (1993). Indian J. Chem. 32A, 531-535.
Faure, P. R., Loiseleur, H. \& Thomas-David, G. (1973). Acta Cryst. B29, 1890-1893.
Fernandez-Pol, J. A. (1977). Biochem. Biophys. Res. Commun. 78, 136-143.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mahler, H. R. \& Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801-803. New York: Harper \& Row Publishers.

Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Takenaka, A., Utsumi, H., Yamamoto, T., Furusaki, A. \& Nitta, I. (1970). Nippon Kagaku Zasshi, 91, 921-927.

Takusagawa, F. \& Shimada, A. (1973). Chem. Lett. pp. 1089-1090.

Acta Cryst. (1998). C54, 290-291

## Bis(acetonitrile-N)diaquatrichloroerbium(III) Acetonitrile Solvate

Wiliam Errington, Marcus P. Spry and Gerald R. Willey

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England. E-mail: w.errington@warwick.ac.uk
(Received 23 May 1997; accepted 3 November 1997)


#### Abstract

The metal atom in the title compound, $\left[\mathrm{ErCl}_{3}(\mathrm{MeCN})_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] . \mathrm{MeCN}$, is seven-coordinate and has a distorted pentagonal-bipyramidal geometry, with two of the chlorines in the axial positions.


## Comment

Thionyl chloride dehydration of $M \mathrm{Cl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the presence of tetrahydrofuran (thf) invariably leads to the formation of the solvates $M \mathrm{Cl}_{3}(\text { (hf) })_{x}$. However, there are examples where incomplete removal of water is observed. Typically, we have previously isolated the 'mixed' solvates $\left[\mathrm{ThCl}_{4}(\mathrm{thf})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ ] (Spry et al., 1997) and $\left[\mathrm{YCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{MeCN})_{2}\right]$ (Willey et al., 1996). In this report, we describe $\left[\mathrm{ErCl}_{3}(\mathrm{MeCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeCN}$, (I), as obtained from the reaction of $\mathrm{ErCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} / \mathrm{SOCl}_{2} /-$ MeCN.

(I)

The $\left[\mathrm{ErCl}_{3}\left(\mathrm{MeCN}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$ complex in (I) is represented in Fig. 1. The $\mathrm{Er}-\mathrm{Cl}$ bond distances range
from 2.6132 (9) to 2.6443 (9) $\AA$, with a mean value of 2.6255 (9) A. These values compare well with the mean $\mathrm{Er}-\mathrm{Cl}$ bond distances of 2.590 (2) $\AA$ in $\mathrm{ErCl}_{3}$ (rriethylene glycol) (Rodgers, Voss \& Etzenhouser, 1988) and $2.632(3) \AA$ in $\left[\mathrm{ErCl}_{2}\left(12 \text {-crown-4)( } \mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}$ (Rodgers, Rollins \& Benning, 1988). The $\mathrm{Er}-\mathrm{N}$ bond distances of 2.436 (3) and 2.455 (3) $\AA$ [mean 2.446 (3) $\AA$ ] are slightly longer than those found in $\left[\mathrm{ErFe}(\mathrm{CN})_{6}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ [mean $2.420(5) \AA$ A (Dommann et al., 1990), but shorter than those in $\left[\mathrm{ErCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ terpy $\left.)\right] \mathrm{Cl}_{2}$, terpy is terpyridyl (Keppert et al., 1994). Similarly, the Er$\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distances of 2.318 (3) and 2.369 (3) $\AA$ [mean 2.344 (3) $\AA$ ] are slightly shorter than those present in $\left[\mathrm{ErCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\operatorname{terpy})\right] \mathrm{Cl}_{2}$ [mean 2.353 (7) $\AA$ ], but are significantly longer than those found in $\left[\mathrm{ErCl}_{2}(12\right.$-crown4) $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ ] Cl [mean $3.311(5) \AA$ A ].


Fig. 1. View of the title complex showing the atomic numbering. Displacement ellipsoids are drawn at the $50 \%$ probability level.

For the seven-coordinate Er ${ }^{\text {III }}$ centre, the metal geometry approximates to distorted pentagonal bipyramidal. The atoms in the equatorial (eq) plane have an r.m.s. deviation from the least-squares plane of only $0.018 \AA$. The axial (ax) Cl atoms have an $\mathrm{Cl}-\mathrm{Er}-\mathrm{Cl}$ angle of $170.55(3)^{\circ}$. This non-linearity may be due to the $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Cl}_{\text {eq }}$ repulsions, with a consequent bending of the $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Er}-\mathrm{Cl}_{\mathrm{eq}}$ angles to 95.18 (3) and 93.82 (3) ${ }^{\circ}$. The equatorial inter-ligand angles are also slightly distorted from the ideal $\left(72^{\circ}\right)$, with the largest angles unsurprisingly involving the single equatorial Cl atom, $\mathrm{Cl} 2-\mathrm{Er}-\mathrm{N} 2172.85(8)$ and $\mathrm{Cl} 2-\mathrm{Er}-\mathrm{O} 176.38(7)^{\circ}$. Similar variations are observed in the seven-coordinate $\mathrm{ErCl}_{3}\left(\right.$ triethylene glycol), viz $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Er}-\mathrm{Cl}_{\mathrm{ax}} 169.82$ (7), and $\mathrm{Cl}_{\text {eq }}-\mathrm{Er}-\mathrm{O}_{\text {glycol }} 80.2$ (1) and $79.5(1)^{\circ}$.

## Experimental

The title compound was obtained from the $\mathrm{ErCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} /-$ $\mathrm{SOCl}_{2} / \mathrm{MeCN}$ system following heating at reflux for 24 h .

